Home Page Contact Us linkedin icon

Relevant Projects

Photo of Assaf Schuster
Randomness for deep neural networks

Preliminary results of this young and exciting project show that we can

a. improve the accuracy results of deep neural networks; 

b. reduce their size (required accelerator memory) by more than two orders of magnitude while keeping their accuracy intact and

c. significantly reduce their depth.

ECG analysis using deep neural networks

We are developing a smartphone app for cardiologists to help analyze ECG charts. Our methods identify dozens of cardio-related conditions: “Automatic classification of healthy and disease conditions from images or digital standard 12-lead ECGs.” Vadim Gliner, Noam Keidar, Vladimir Makarov, Arutyun I. Avetisyan, Assaf Schuster and Yael Yaniv. Scientific Reports. September 2020. We develop tools to assist physicians use AI tools: “Meeting the unmet needs of clinicians from AI systems in cardiology: A systematic formulation, and a suggested framework.” Yonatan Elul, Aviv Rosenberg, Assaf Schuster, Alex Bronstein, Yael Yaniv. Proceedings of the National Academy of Sciences of the United States of America (PNAS). April 2021.  We are working on predicting cardiovascular events.

Asynchronous Distributed Training of Deep Neural Networks

We developed asynchronous versions of data parallel training and showed them to be faster than their synchronous counterparts : “Taming Momentum in a Distributed Asynchronous Environment.” Ido Hakimi, Saar Barkai, Moshe Gabel, Assaf Schuster. Aug 2019, arXiv. We also solved the issue associated with asynchrony, named “staleness”: “Gap-Aware Mitigation of Gradient Staleness.” Saar Barkai, Ido Hakimi, Assaf Schuster. ICLR 2020. We developed model parallel approach for fine tuning of giant deep models on commodity hardware (submitted for publication).